UB.dmirg: A Syntactic Lexical System for Recognizing Textual Entailments
نویسندگان
چکیده
This paper reports on our Recognizing Textual Entailment (RTE) system developed for participation in the Text Analysis Conference RTE 2009 competition. The development of the system is based on the lexical entailment between two text excerpts, namely the hypothesis and the text. To extract atomic parts of hypotheses and texts, we carry out syntactic parsing on the sentences. We then utilize WordNet and FrameNet lexical resources for estimating lexical coverage of the text on the hypothesis. Using a failure analysis process, we show that the main difficulty of our RTE system relates to the underlying difficulty of syntactic analysis of sentences.
منابع مشابه
A Logic-Based Semantic Approach to Recognizing Textual Entailment
This paper proposes a knowledge representation model and a logic proving setting with axioms on demand successfully used for recognizing textual entailments. It also details a lexical inference system which boosts the performance of the deep semantic oriented approach on the RTE data. The linear combination of two slightly different logical systems with the third lexical inference system achiev...
متن کاملSemEval-2010 Task 12: Parser Evaluation Using Textual Entailments
Parser Evaluation using Textual Entailments (PETE) is a shared task in the SemEval-2010 Evaluation Exercises on Semantic Evaluation. The task involves recognizing textual entailments based on syntactic information alone. PETE introduces a new parser evaluation scheme that is formalism independent, less prone to annotation error, and focused on semantically relevant distinctions.
متن کاملUB.dmirg: Learning Textual Entailment Relationships Using Lexical Semantic Features
This paper describes our Recognizing Textual Entailment (RTE) system developed at University of Ballarat, Australia for participation in the Text Analysis Conference RTE 2010 competition. This year, we participated in the Main task and used a machine learning approach for learning textual entailment relationships using parse-free lexical semantic features. For this, we employed FrameNet and Wor...
متن کاملParser evaluation using textual entailments
Parser Evaluation using Textual Entailments (PETE) is a shared task in the SemEval-2010 Evaluation Exercises on Semantic Evaluation. The task involves recognizing textual entailments based on syntactic information alone. PETE introduces a new parser evaluation scheme that is formalism independent, less prone to annotation error, and focused on semantically relevant distinctions. This paper desc...
متن کاملFrom Lexical Entailment to Recognizing Textual Entailment Using Linguistic Resources
In this paper, we introduce our Recognizing Textual Entailment (RTE) system developed on the basis of Lexical Entailment between two text excerpts, namely the hypothesis and the text. To extract atomic parts of hypotheses and texts, we carry out syntactic parsing on the sentences. We then utilize WordNet and FrameNet lexical resources for estimating lexical coverage of the text on the hypothesi...
متن کامل